Form Approved

REPORT DOCUMENTATION PAGE OMB NO. 0704-0188

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this collection
of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188,) Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED A
5/4/2005 Final Progress Report 11/;2 \/OO -\ \/QO/OL\
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Integrated Environment for Control Software Engineering
DAAD190110003

6. AUTHOR(S)

Scott A. Smolka, Eugene Stark, Rance Cleaveland
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Department of Computer Science REPORT NUMBER

SUNY Stony Brook

Stony Brook, NY 11794-4400
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

U. S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

L\'OD Q(Ow \ - C_, ‘
11. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official
Department of the Army position, policy or decision, unless so designated by other documentation.

12 a. DISTRIBUTION / AVAILABILITY STATEMENT 12 b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Significant scientific progress has been made during the final year of the grant. We have continued the
development of PIOAL, the process-algebraic specification language for Probabilistic I/O Automata that forms the basis for our tool
integration effort. We have also developed a Monte Carlo model checking algorithm a Hybrid-automaton model of cardiac; and a
safety-liveness semantics for UML 2.0 Sequence Diagrams. We have moreover pursued the development of mathematical formalisms
for the combined modeling of functional and performance aspects of systems, and for software architecture specification.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Probabilistic Input/Output Automata, Concurrency Workbench, Monte Carlo Model 5
Checking

16. PRICE CODE

REPORT DOCUMENTATION PAGE (SF298)
(Continuation Sheet)

1 List of Papers Submitted or Published Under ARO Sponsorship

1

10.

11.

E. Stark, “Formally Specifying CARA in Java,” International Journal on Software Tools for
Technology Transfer, Vol. 5, No. 4, pp. 331-350 (2004).

. E. Stark and W. Song, “Linear Decision Diagrams.” Unpublished technical report, available

at http://bsd7.starkhome.cs.sunysb.edu/ stark/REPORTS/1dd.pdf

. R. Grosu and S.A. Smolka. “Safety-Liveness Semantics for UML 2.0.” Proceedings of ACSD

2005: Fifth International Conference on Application of Concurrency to System Design, IEEE
Computer Society Press, Los Alamitos, CA, USA, (June 2005).

. P. Ye, E. Entcheva, R. Grosu, and S.A. Smolka. “Efficient Modeling of Excitable Cells Using

Hybrid Automata.” Proceedings of Computational Methods in Systems Biology, Lecture Notes
in Computer Science, Springer-Verlag (April 2005).

. R. Grosu and S.A. Smolka. “Monte Carlo Model Checking.” Proceedings of TACAS 2005:

Eleventh International Conference on Tools and Algorithms for the Construction and Analysis
of Systems, Lecture Notes in Computer Science, Springer-Verlag (April 2005).

. C.W. Keller, D. Saha, S. Basu, and S.A. Smolka. “FocusCheck: A Tool for Model Checking

and Debugging Sequential C Programs.” Proceedings of TACAS 2005: FEleventh International
Conference on Tools and Algorithms for the Construction and Analysis of Systems, Lecture
Notes in Computer Science, Springer-Verlag (April 2005).

P. Yang, Y. Dong, C.R. Ramakrishnan, and S.A. Smolka. “Compiling Mobile Processes for
Efficient Model Checking” (Winner of Most Practical Paper Award). Proceedings of Seventh
International Symposium on Practical Aspects of Declarative Languages (PADL 05), Lecture
Notes in Computer Science, Springer-Verlag (Jan. 2005).

. S. Basu, D. Saha, and S.A. Smolka. “Localizing Program Errors for Cimple Debugging.”

Proceedings of 24th IFIP International Conference on Formal Techniques for Networked and
Distributed Systems (FORTE 2004), Lecture Notes in Computer Science, Springer-Verlag
(Sep. 2004).

. A. Ray and R. Cleaveland. “Unit Verification: the CARA Experience.” Software Tools for

Technology Transfer, 5(4):351-369, May 2004.

D. Zhang and R. Cleaveland. “Fast On-the-Fly Model Checking for Data-Based Systems.”
Submitted for publication.

D. Zhang and R. Cleaveland. “Faster Parametric Model Checking for Real Time.” Submitted
for publication.

)

12. D. Zhang and R. Cleaveland. “Temporal-Logic Query Checking for Real-Time Systems.’
Submitted for publication.

2 Scientific Personnel Supported by the Project

Senior Personnel Rance Cleaveland, Scott Smolka, Eugene Stark

Graduate Students Arnab Ray, Wenxin Song, Zan Sun, DeZhuang Zhang, and Wenkai Tan

3 Report of Inventions

4 Scientific Progress and Accomplishments

Significant scientific progress has been made during the fourth and final year of grant DAAD190110019.
A main thrust of the fourth year’s activities has been aimed at improving the performance of the
PIOATool and comparing its performance to the PRISM model checker. We have also designed
and implemented the Aristotle runtime verification tool suite and applied it to the Linux kernel,
as well as the GMC? software model checker for G¢cC. We also developed and implemented a generic,
on-the-fly technique for checking the correctness of real-time systems. Finally, we developed a
Simulink/Stateflow model of the CARA software system.

4.1 Performance Enhancement of PIOATool

A main thrust of our activities over the past year has been to try to obtain a meaningful comparison
of the efficiency of the PIOATool analysis algorithms with those of the PRISM system from the
University of Birmingham in the UK. We were particularly interested in comparing the performance
of our sparse-matrix package implemented using ”linear decision diagrams” (LDDs, discussed in
last year’s progress report) with the performance of PRISM’s package which uses multi-terminal
binary decision diagrams (MTBDDs) in the form of the ”CUDD” BDD library from the University
of Colorado at Boulder. To this end, we created a version of the standard ”kanban” benchmark
that would compile into an identical CTMC model under both PIOATool and under PRISM. We
compared the time taken by PRISM to do a reachability analysis of this model with the time taken
by PIOATool to do the same thing using the LDD-based matrix implementation. Although we did
not expect the Standard ML-based PIOATool to be quite as fast as the C++-based CUDD library
used in PRISM, unfortunately we found initially that PIOATool was substantially slower than
PRISM, and that the comparison factor got worse as the size of the problem instances increased.

In order to try to get a better understanding of why PRISM was able to achieve so much
better performance than PIOATool, we decided to construct a serious MTBDD implementation in
Standard ML, adapt our sparse matrix package so that it could use either an LDD or MTBDD
representation, and to see how well we could make the MTBDD-based implementation perform.
Since the Standard ML of New Jersey runtime system does not provide the ML programmer with
much control over its allocation behavior, we needed to develop some innovative approaches to
limit the size of the MTBDD node table and operation caches and avoid thrashing. In addition, a
major refactoring of the PIOATool code was required in order to make the reachability and other

algorithms as independent as possible of the underlying matrix representation. In the end, we
found that we were able to perform reachability analysis in PIOATool using an MTBDD-based
matrix representation at a speed roughly four times slower than that of PRISM/CUDD on the
same hardware, with the comparison factor roughly independent of the problem instance, as long
as sufficient memory was available. As a result of this work, we were able to conclude that the fact
that our LDD implementation did not make use of any sort of operation cache was the main reason
for the poor performance, and that in order to build an LDD implementation able to compete
favorably with MTBDDs we would somehow have to find a way to incorporate operation caches
into the former.

We also compared the performance of PRISM’s MTBDD-based iterative algorithm for CTMC
steady-state analysis with that of a similar procedure implemented in PIOATool. We found a speed
relationship similar to that observed in the case of reachability analysis. However, the PRISM
group has previously reported that iterative methods for solving large linear systems do not work
particularly well when MTBDDs are used to represent the solution vector, due to an apparent lack
of patterns in the solution vector that can be exploited by an MTBDD-based representation. We
also found this to be the case in our experiments.

As part of the above-described work, we implemented several iterative solution procedures in
the context of PIOATool, including Jacobi iteration with an over-relaxation parameter, successive
over-relaxation (SOR), and a block Gauss-Seidel variant that exploits structure obtained from
reachability analysis to improve the convergence rate. We supplanted our symbolic procedure for
performing steady-state analysis in PIOATool with a numeric procedure suitable for iterative use
with MTBDD-based matrix implementations. We also devised and implemented a ”compaction”
algorithm for MTBDD-based matrices, which can efficiently take such a matrix, together with
MTBDD-based descriptions for subsets of the row and column indices, and output a smaller matrix
that includes only those rows and columns having indices in the specified sets. We use this algorithm
for efficiently converting an MTBDD-based matrix having a huge number of rows and columns,
most of which are zero, to a traditional sparse matrix implementation having row and column
indices that fit within a single machine word.

4.2 Runtime Verification of the Linux Kernel

We have developed Aristotle, a system that employs a combination of runtime monitoring and
Monte Carlo approximation techniques for the development of high-confidence OS kernels. Aristotle
includes a kernel-specific compiler (KGCC) that instruments OS kernels with inline monitoring
code for checking system-correctness properties at runtime. As an OS executes, instrumented
code segments are monitored for compliance with desired properties. Using a runtime adaptation
of a novel Monte-Carlo model-checking algorithm we recently developed, Aristotle estimates the
confidence that a certain property is correct. When the confidence exceeds a certain threshold,
inline monitoring is turned off, therefore regaining the performance lost due to instrumentation
overhead.

Aristotle’s main benefit is its use of an adaptive approach to reduce monitoring overhead.
Frequently executed code paths are responsible for the majority of the monitoring overhead—and
are therefore the first to have their monitoring turned off—as the system is used more and confidence
in its stability grows. At the same time, monitoring of seldom-executed code paths, which are often
the hardest to debug, continues as long as the confidence in them has not reach sufficiently high

levels, and since they do not execute frequently, they contribute little to the overhead.

Our prototype system instruments Linux file-system code. Our benchmarking results show
that, although instrumentation overhead can be high initially, the system reaches high confidence
within acceptably short periods of time, at which point instrumentation can be turned off and
the overhead drops to as little as 11%. Our results also illustrate Aristotle’s ability to pinpoint
kernel-resident bugs, such as object leaks. A paper on the Aristotle system has been submitted for
publication.

4.3 Open-Source Model Checking

GMC? is a software model checker we recently developed for GCC, the open-source compiler from
the Free Software Foundation (FSF). GCC has evolved from a modest C compiler, to a full-blown,
multi-language compiler that can generate code for more than 30 target architectures. During the
past year, the Tree-SSA branch of GCC has merged with the main line, resulting in the addition
of two new intermediate languages: GENERIC, which provides a common infrastructure for abstract
syntax tree analysis and optimization; and GIMPLE three-address code, which provides a common
infrastructure for CFG (control flow graph) analysis and optimization.

GMC?2, which is part of the GMC static-analysis and model-checking tool suite for GCC under devel-
opment at SUNY Stony Brook, can be seen as an extension of Monte Carlo model checking to the
setting of concurrent, procedural programming languages. Monte Carlo model checking is a newly
developed technique that utilizes the theory of geometric random variables, statistical hypothesis
testing, and random sampling of lassos in Biichi automata to realize a one-sided error, randomized
algorithm for LTL model checking. To handle the function call/return mechanisms inherent in
procedural languages such as C/C++, the version of Monte Carlo model checking implemented
in GMC? is optimized for pushdown-automaton models. Our experimental results demonstrate that
this approach yields an efficient and scalable software model checker for GCC.

4.4 Efficient On-the-Fly Checking of Real-Time Systems

In a collection of papers that have recently been submitted for publication, we have developed a
generic automated method for checking properties of real-time systems. The method relies on the
symbolic construction of proofs that systems obey certain properties; by tweaking the proof rules,
we obtain procedures for (1) real-time model checking; (2) parameteric real-time model checking,
in which systems have parameters that may be varied, resulting in different system models; (3)
real-time temporal-logic query checking, in which the goal is to take a formula with “placeholders”
and fill them in with the strongest assertions that still make the formula true for the model.

The resulting algorithms are based on top-down proof search. In contrast with existing real-time
model-checking approaches, which rely either on “pure forward” or “pure backward” exploration
of a model’s behavior, our method uses a combination of the two in a natural manner, as a human
performing a proof would (prove and remember lemmas, etc.) To assess our results empirically, we
ran them on a number of case studies proposed in the literatue. The algorithms we developed ex-
hibited vastly better performance for scenarios when systems fail to satisfy the properties proposed
for them (the most usual outcome, in practice, since models need debugging) while matching the
best existing techniques when systems do satisfy formulas.

4.5 Simulink/Stateflow Model of CARA

Last year, we reported that we had constructed an executable specification of the Computer Assisted
Resuscitation Algorithm (CARA) using a restricted fragment of Java as a specification language. A
paper on this effort will appear in a special issue of the journal Software Tools for Technology Trans-
fer. This year, using the Java model of CARA as a basis, we have developed a Simulink/Stateflow
model of CARA. Simulink/Stateflow is a hybrid-systems graphical modeling notation developed
and marketed by The MathWorks, Inc. It has witnessed widespread use within the automotive,
aerospace, and military/defense industries. We are now in the process of using the Reactis tool
suite of Reactive Systems, Inc. to automatically generate comprehensive yet compact test data for
CARA, which we plan to transfer to researchers at the Water Reade Medical Center.

5 Technology Transfer

Cleaveland and Smolka are co-founders, along with Steve Sims, of Reactive Systems, Inc. (RSI),
which makes advanced design tools for control-software engineering. RSI’s main product is the Re-
actis tool suite, a companion product to The MathWorks Model-Based design tools. Reactis allows
MathWorks users to automatically generate thorough yet compact test suites for Simulink /Stateflow
models. It also allows one to visualize the execution of models on generated tests with a highly
sophisticated visual simulation environment. The Company is a member of The MathWork’s Con-
nections program, and currently has 25 automotive and aerospace customers spread across seven
countries. Cleaveland also made over 40 presentations about Reactis to different customers during
the year. Part of the technology underpinning Reactis has been influenced by ARO-supported re-
search of Cleaveland and Smolka. To learn more about Reactive Systems, please visit the company
web site at www.reactive-systems.com or contact Cleaveland or Smolka directly.

In other technology-transfer efforts, Scott Smolka gave a presentation on Monte Carlo model
checking at the ARO-sponsored 2004 HCES workshop on High-Confidence Embedded Systems.
Cleaveland gave presentations on his and Smolka’s experiences in starting Reactis at the 2004
Monterey Workshop in Baden, Austria, and he delivered and invited address on software V&V at
the MATLAB EXPO, the premiere model-based software development meeting in Tokyo.

